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INTRODUCTION: Lysosomes are key degrada-
tive compartments within the cell that are
essential to maintain protein homeostasis.
Their dysfunction causes over 70 rare genetic
diseases collectively known as lysosomal stor-
age disorders (LSDs). Intracellular sorting of
most soluble lysosomal enzymes occurs by
tagging with mannose 6-phosphate (M6P)
residues in the Golgi apparatus, which are
recognized by specific receptors that direct
transport to the endosomal/lysosomal system.
GlcNAc-1-phosphotransferase catalyzes the first
step inM6P-tagging. Inherited loss of GlcNAc-1-
phosphotransferase function causes the severe

LSD mucolipidosis type II (MLII). The M6P
signal-mediated lysosomal sorting pathway
is well studied and thought to be completely
understood. However, it remains unknown
whether additional critical components exist.

RATIONALE: Certain viruses program success-
ful entry into cells by co-opting lysosomal
cathepsin proteases to cleave and activate viral
structural proteins allowing delivery of their
genome into the cytoplasm. This infection
strategy is shared among different virus
families including reovirus, Ebola virus, and
severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2). Therefore, these viruses
are sensitive probes for lysosomal function. To
identify genes important for lysosomalhomeosta-
sis, we performed genome-scale CRISPR screens
using susceptibility to reovirus infection as
phenotypic selection.

RESULTS: The genetic screens identified
TMEM251—a small, uncharacterized protein—
as an essential component of lysosomal bio-
genesis. Cells with knockout (KO) mutations
in TMEM251 were refractory to infection by
reovirus, SARS-CoV-2, and vesicular stoma-
titis virus pseudotyped with the Ebola virus
glycoprotein. This was due to strongly reduced
activity of lysosomal cathepsin proteases. More-
over, quantitative proteomics revealed a severe
global sorting defect in which intracellular
enzymes destined for lysosomal delivery were
instead secreted into the medium. Thus, we
renamed TMEM251 to LYSET (for lysosomal
enzyme trafficking factor). Mechanistically,
we showed that LYSET binds to GlcNAc-1-
phosphotransferase in the Golgi apparatus and
controls its stability. LYSET KO caused aber-
rant localization of GlcNAc-1-phosphotransferase
to lysosomes and subsequent degradation, re-
sulting in M6P tagging failure. LYSET KO mice
displayed typical diagnostic features of MLII
including elevated levels of lysosomal enzymes
in blood serum and enlarged lysosomes with
accumulation of electron dense material in
isolated cells. Recently, an MLII-like genetic
disorder in patients carrying biallelic muta-
tions in LYSET has been described. We showed
that complementation of LYSET KO cells with
these pathogenic mutants failed to rescue lyso-
somal sorting defects.

CONCLUSION: Our work identifies LYSET as
an indispensable component of the biosyn-
thetic pathway that directs transport of sol-
uble enzymes to the lysosome. As such, LYSET
is essential for entry of diverse, highly patho-
genic viruses that rely on endo-lysosomal
activation by cathepsins. We uncovered an
unexpected molecular mechanism in which
LYSET regulatesGlcNAc-1-phosphotransferase
function by binding to and retaining it in
the Golgi apparatus. The key role of LYSET
in lysosome biogenesis likely explains MLII-
like symptoms observed in patients with
LYSET mutations. Altogether, our findings
provide insights in fundamental cell physi-
ology with relevance for human inherited
disease and viral infection.▪
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LYSET is an essential component of the M6P lysosomal transport pathway. By using genome-scale
genetic screens for viral infection we identified LYSET as a protein required for lysosome biogenesis. LYSET
controls GlcNAc-1-phosphotransferase (GlcNAc-1-PT) function by binding to and retaining it in the Golgi
apparatus. In LYSET KO cells M6P tagging is severely disrupted resulting in strong resistance to infection by
certain viruses, aberrant secretion of enzymes normally present in the lysosome, and abnormally large
lysosomes filled with storage material as a result of drastically reduced levels of active hydrolytic enzymes.
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Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-
phosphotransferase–mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-
phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII).
Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional
GlcNAc-1-phosphotransferase. We used genome-scale CRISPR screens to identify lysosomal enzyme
trafficking factor (LYSET, also named TMEM251) as essential for infection by cathepsin-dependent viruses
including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). LYSET deficiency resulted in global
loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes.
Lyset knockout mice exhibited MLII-like phenotypes, and human pathogenic LYSET alleles failed to restore
lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P traffickingmachinery and
mutations in LYSET can explain the phenotype of the associated disorder.

V
iruses have evolved to hijack the cellular
endocytic machinery to enter the cell (1).
Lysosomal cathepsin proteases mediate
the stepwise proteolytic disassembly of
reovirus particles, which is essential

for infection (2). Cathepsins also cleave viral
glycoproteins of several enveloped viruses
during viral entry, triggering productive infec-
tion. This includes highly pathogenic viruses

including the filovirus family member Ebola
virus (EBOV) and coronaviruses including
severe acute respiratory syndrome corona-
virus (SARS-CoV), SARS-CoV-2, and Middle
East respiratory syndrome (MERS) corona-
viruses (3–6). These viruses are thus sensitive
probes of lysosomal function.

LYSET is a cellular factor essential for infection
by diverse viruses including SARS-CoV-2

To identify genes critical for reovirus infection,
we performed a genome-scale CRISPR–Cas9
screen in human glioblastoma cells (U87MG).
In these cells, productive viral infection leads
to cell death. After CRISPR-Cas9 mutagenesis
with the Brunello library (7), which covers
19,114 genes, cells were infected with reovirus
type 3D (ReoT3D). To identify protective gene
mutations, we retrieved the guide RNA (gRNA)
sequences present in the resistant population
and compared them with the unselected popu-
lation (fig. S1A). In line with its essential role in
reovirus entry, the gene encoding cathepsin L
was highly enriched in the resistant popula-
tion (Fig. 1A and table S1) (8). Consistent with
the importance ofmannose 6-phosphate (M6P)–
dependent lysosomal transport for cathepsin
activity (9), genes encoding the a/b (GNPTAB)
(10) and g (GNPTG) (11) subunits of GlcNAc-1-
phosphotransferase scored highly, as did site-1
protease (S1P), aGolgi-localized protein required
for theactivationofGlcNAc-1-phosphotransferase
(12). We did not identify M6P receptors (MPR),
likely owing to functional overlap between the
twoM6P receptor types, cation-dependent and
cation-independentMPR (13). The second high-

est hit was TMEM251, a gene encoding a largely
uncharacterized transmembrane protein. Based
on the results outlined below, we renamed
this gene lysosomal enzyme trafficking factor
(LYSET). A separate genome-scale CRISPR
screen in eHAP cells also identified deletion
of GNPTAB and LYSET as highly protective
against reovirus infection, corroborating the
essentiality of M6P-mediated lysosomal pro-
tein sorting and LYSET for reovirus infection
(fig. S1B and table S2). To validate and charac-
terize the role of LYSET, GNPTAB, and S1P in
viral infection, we generated clonal knockout
(KO) cell lines in U87MG and 293FT cells using
CRISPR-Cas9 (fig. S2). Knockout of LYSET,
GNPTAB, and S1P resulted in strong protection
against cell death following reovirus infection in
both cell types (Fig. 1B). Intracellular viral RNA
levels and virus production were severely re-
duced, suggesting an early block in viral entry or
replication (Fig. 1, C and D). Because GNPTAB,
GNPTG, and S1P have known roles in the sort-
ing of lysosomal cathepsins, we reasoned that
LYSET might act similarly. We first tested
whether LYSET deficiency would prevent viral
entry of other cathepsin-dependent viruses
(3). As a faithful model of EBOV entry (14) we
used aGFP-encoding vesicular stomatitis virus
pseudotypedwith the EBOV glycoprotein (VSV-
EBOV-GP).Whereas parental 293FT cells were
susceptible to infection with VSV-EBOV-GP
as evidenced by a time-dependent increase in
GFP fluorescence, LYSET KO cells were highly
refractory to infection (Fig. 1E, fig. S3A, and
movies S1 and S2). Similar results were ob-
tained using clonal HAP1 LYSET KO cells and
pooled knockouts in human skin fibroblasts
(fig. S3, B to D, and movies S3 to S6). SARS-
CoV-2 requires activation of its spike protein
during viral entry, which can be mediated by
active endosomal or lysosomal cathepsins
or by the transmembrane serine protease
TMPRSS2 (5). In cells with very low TMPRSS2
expression, cathepsins become essential for
SARS-CoV-2 entry. Whereas parental A549-
ACE2 cells were highly susceptible to infection
by VSV pseudotyped with the SARS-CoV-2
spike protein, deletion of LYSET strongly re-
duced infection levels during the time course of
infection (fig. S3, E and F, and movies S7 and
S8). To validate these results in the context of
the authentic virus, we used an infectious mo-
lecular clone of SARS-CoV-2 that expresses
the mNeonGreen fluorescent protein (15). Con-
sistent with the results of the pseudotyped
viruses, we observed a substantial decrease in
infection (Fig. 1F and fig. S3G). In cells expres-
singTMPRSS2,most SARS-CoV-2 variants pref-
erentially use this route of entry (16). However,
the recently emerging omicron variant is less
efficiently cleaved by TMPRSS2 and more de-
pendent on cathepsin-mediated entry than
other variants of concern such as the delta
variant (16, 17).We thus tested lentiviral particles
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pseudotyped with SARS-CoV-2 spike variants
in cells that expressed or did not express
TMPRSS2. Consistent with our results with
spikes corresponding to the earlyWuhan strain,
LYSET KO resulted in decreased entry of both
delta andomicron variant–pseudotyped viruses
in cells that did not express TMPRSS2 (Fig. 1G).
In cells expressing TMPRSS2, the delta variant
was only moderately affected by LYSET KO
whereas the omicron variant was still strongly
dependent on LYSET (Fig. 1G). Thus, our ge-
netic screens identified LYSET as a host factor
essential for a diverse group of viruses that
depend on endosomal protease activation
during cell entry.

LYSET is critical for M6P-mediated lysosomal
enzyme transport
The identification of a previously uncharacter-
ized transmembrane protein potentially involved
in cathepsin sortingwas unexpected as the key
proteins involved in lysosomal targeting are
well established (13). To investigate whether
LYSETaffected lysosomal trafficking of cathep-
sins, we analyzed cathepsin B (CTSB) protein
levels in 293FT andU87MGwild-type (WT) and
KO cells (Fig. 2A and fig. S4A). InWT cells, most
CTSBwas present in itsmature form following
autocatalytic cleavage in lysosomes. Only low
levels were found in the extracellular medium,
indicating efficient lysosomal sorting and traf-

ficking. By contrast, LYSET deficiency resulted
in aberrant secretion of CTSB precursor forms
into themedium concomitantwith a near com-
plete loss of mature CTSB in the cell lysate
(Fig. 2A and fig. S4A). The dysregulation of
cathepsin transport was equally pronounced
as observed after disruption of core M6P for-
mation components (GNPTAB and S1P). We
extended the analysis to a larger panel of
cathepsins in 293FT andHAP1 cells (fig. S4, B
and C) and measured cathepsin activity using
a quenched cell-permeable probe (BMV-109)
that covalently links to active cysteine cathep-
sins and gains fluorescence (18). Compared
with WT cells, LYSET KO cells displayed a
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Fig. 1. LYSET is a critical host factor for multiple viruses that use acti-
vated cathepsins for entry. (A) CRISPR screen for reovirus T3D (ReoT3D) host
factors in U87MG cells. Significance of enrichment was determined through
MAGeCK analysis (y axis). All genes are plotted as bubbles on the x axis, each
representing a specific gene. Each subset is color-coded according to function
and labels show gene names. (B) Crystal violet staining after infection with
ReoT3D representative of n = 3 biologically independent replicates. mock,
noninfected controls. (C) RT-qPCR quantification of ReoT3D RNA in infected
U87MG and 293FT cells at multiplicity of infection (MOI) 1 at 72 hours post
infection (hpi) (mean ± SEM, n = 3) (D) U87MG or 293FT cells were infected with
MOI of 1 ReoT3D virus. At 72 hpi, cells were lysed and viral titers determined
through plaque assay [mean ± SEM, n = 3, ***P < 0.001, ****P <0.0001;

significance determined through one-way ANOVA with post-hoc Dunnett’s
multiple comparisons test for (C) and (D)]. (E) Time course of VSV-EBOV-GP
infection of 293FT cells WT and LYSET KO (mean ± SEM, n = 3). (F) Bar
graph depicting independent infections of A549-ACE2 cells ± LYSET KO with
SARS-CoV-2-mNeon using flow cytometry (mean ± SD, n = 3, ****P < 0.0001;
significance determined through unpaired, two-tailed student’s t-test).
(G) Infection of SARS-CoV-2 Delta and Omicron spike reporter virus particles
in Huh7.5.1 cell lines with or without LYSET KO. Cells were engineered to
stably express ACE2 or ACE2 in combination with TMPRSS2, as indicated.
Luciferase activity was measured at 72 hpi and normalized to WT cells
(mean ± SEM, n = 6, ***P < 0.001, ****P < 0.0001; significance was determined
by unpaired, two-tailed student’s t-test with Welch’s correction).
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strongly decreased fluorescence after live cell
labeling suggesting a global loss of cysteine
cathepsin protease activity (Fig. 2B and fig.
S4, D and E). This indicated a severe defect in
lysosomal protein targeting because activity
requires autocatalytic cleavage in lysosomes.
To investigate whether the missorting was
specific to cathepsins or pointed to a more
general defect, we analyzed the consequences
of LYSET deficiency for additional lysosomal
proteins and in different cellular contexts. We
consistently found large increases in secretion
of typical soluble lysosomal proteins into the
extracellular medium although their intracel-
lular protein levels and proteolytic maturation
were strongly decreased in KO cells generated

in primary human fibroblast, U87MG, 293FT,
HAP1, and SK-MEL-30 cells (fig. S5). In addi-
tion, we observed an increase in LC3B type II
levels associated with autophagic membranes
in cell lysates (fig. S5C). Autophagy markers
or the accumulation of an autophagosome-
specific dye were markedly elevated in LYSET
and GNPTAB KO cells compared withWT cells
under basal conditions and not further ele-
vated by blocking lysosomal hydrolase activities
with chloroquine (fig. S6A) or a combination of
chloroquine and rapamycin (fig. S6B). This was
expected because the content of autophagic
vesicles is degraded by lysosomal hydrolases
upon fusion with lysosomes (19). Tomore com-
prehensively assess the effects of LYSET knock-

out on a primary cell type, we used quantitative
proteomic approaches in mouse embryonic
fibroblasts (MEFs). We first generated C57BL/
6J mice with deletions in Lyset by gene edit-
ing. We designed sgRNAs to excise a region in
the second exon of Lyset resulting in two
mouse lines with distinct out of frame deletion
variants (of D184 and D199 nucleotides) (fig. S7,
A to C and E). To generate mice with Lyset gene
deletions (referred to as Lyset KO), mice were
bred as compound heterozygotes (D184/D199)
or homozygotes. We verified loss of Lyset pro-
tein expression in different tissues (fig. S7D).
To investigate the extracellular proteome, we
collected and concentrated serum-free con-
ditionedmedium fromWTandLysetKOMEFs.
In parallel, we prepared cell lysates to deter-
mine the intracellular proteome. Using data
independent acquisition (DIA) mass spec-
trometry (fig. S8A) (20), we detected and
quantified more than 4000 proteins in the
intracellular proteome and more than 1000
proteins in the secretome, showing a high cor-
relation between replicates (fig. S8, B to E, and
table S3). Only a small subset of proteins were
differentially expressed in LysetKO versusWT
cells. Most of the proteins found in higher
abundance in the secretome of LysetKOMEFs
were well-characterized luminal lysosomal pro-
teins (indicated in red) whereas these proteins
were depleted from the intracellular proteome
(Fig. 2C and fig. S9A). The protein levels of two
lysosomal enzymes known to traffic indepen-
dently from M6P (Gba and Acp2) were unaf-
fected (Fig. 2C), which we confirmed using
specific activity assays (fig. S10).Moreover,mem-
brane lysosomal proteins (indicated in blue)
were unaffected (Fig. 2C). Similar results were
obtained using parallel reaction monitoring
(PRM), a targeted method that provides more
sensitive quantification of a smaller subset of
lysosomal proteins (fig. S9B) (20). Thus, LYSET
deficiency results in a severe defect in lysosomal
trafficking that is specific for M6P cargoes.
Key steps in lysosomal enzyme sorting

include modification with M6P by GlcNAc-1-
phosphotransferase in the Golgi apparatus
and the subsequent binding to M6P-specific
receptors that mediate the transport to the
lysosome (13). To distinguish between an early
defect in tagging or a later defect in M6P rec-
ognition, we used an unbiased proteomic ap-
proach to detect M6P modifications directly
on glycoproteins isolated from WT cells and
cells deficient in LYSET. This method, based
on immobilized metal ion affinity chromatog-
raphy (Fe3+-IMAC), allows for enrichment of
glycopeptides containing the negatively charged
M6P modification followed by glycopeptide
identification using mass spectrometry (fig.
S11A) (21). In WT 293FT cells we readily identi-
fiedglycopeptidescontainingM6Pfromcanonical
lysosomal enzymes (Fig. 2D, fig. S11B, and table
S4). As expected, these M6P glycopeptides
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cell lines containing KO mutations in indicated genes. (B) Cathepsin activity in cells was determined by
quantification of BMV-109 fluorescence signal in live 293FT WT and KO cells as the raw corrected total cellular
fluorescence (CTCF) in arbitrary fluorescence units (AFU) (mean ± SD, n = 100 cells, ****P < 0.0001; significance
determined through one-way ANOVA with a post-hoc Dunnett’s multiple comparisons test). (C) Proteomic
analysis of WT and LYSET KO MEFs by unbiased DIA. DIA was used for intracellular and secreted proteins.
(D) Z-score analysis of individual peptides that contain the M6P moiety as determined using glycoproteomics.
Peptides were derived from indicated lysosomal proteins in WT, LYSET KO, and GNPTAB KO 293FT cells;
n = 3 replicates for each cell line. (E) Immunoblot analysis of M6P-tagged proteins from 293FT WT, GNPTAB KO,
S1P KO, and LYSET KO cells using an M6P-specific, single-chain antibody fragment (M6P).
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were absent in cells lacking GNPTAB. The
LYSET KO cells displayed a similar absence of
M6P-modified glycopeptides. This was con-
firmed in an orthologous assay using a single-
chain M6P-specific antibody fragment (22).
Lysates of 293FT and HAP1 cells devoid of
LYSET showed a large decrease in M6P im-
munoreactive glycoproteins, comparable to
decreases observed with GNPTAB KO and S1P
KO cells (Fig. 2E and fig. S11C). Thus, LYSET
is essential for an early step in lysosomal
enzyme transport and the generation of the
M6P modification.

LYSET binds to GNPTAB and regulates its
function by mediating proper Golgi localization

LYSET is a small, poorly characterized protein
containing two transmembrane domains. It
colocalizes with GNPTAB and GNPTG in the
Golgi apparatus (Fig. 3, A to C, and fig. S12, A
to C).We performed immunoprecipitation (IP)
followed by immunoblotting experiments to

test whether LYSET interacts with GNPTAB.
After coexpression of epitope-tagged LYSET
and GNPTAB we detected GNPTAB-MYC in
the LYSET-FLAG IP and LYSET-FLAG in the
GNPTAB-MYC IP (Fig. 3D). These reciprocal
co-IPs appeared to be specific as the endogenous
Golgi protein Giantin was not detected and
neither LYSET or GNPTAB was found in con-
trol IPs with epitope-taggedmNeonGreen. This
interaction suggests that LYSET plays a role
in modulating the function of the GlcNAc-1-
phosphotransferase complex. Because pathogenic
mutations in GNPTAB leading to mislocaliza-
tion of the GlcNAc-1-phosphotransferase com-
plexhavebeen reported (23,24),wehypothesized
that LYSETmight functionby retainingGNPTAB
in the Golgi apparatus. We examined this by
immunofluorescence analysis for endogenous
GNPTAB and co-staining with antibodies for
the Golgi apparatus (GM130) and lysosomes
(LAMP2). The staining pattern in LYSET KO
HAP1 cells was clearly distinct from WT cells.

Whereas in WT cells GNPTAB was localized
predominantly in the Golgi apparatus LYSET
KO resulted in a loss of Golgi colocalization
and a gain in localization to lysosomal struc-
tures (Fig. 4A). To investigate this further, we
characterized the expression of the endogenous
GlcNAc-1-phosphotransferase complex in sub-
cellular fractions. We used sequential centrif-
ugation to isolate a 20K fraction enriched in
lysosomes and a 100K fraction enriched in ER/
Golgimembranes (25). LYSETdeficiency resulted
in a near complete loss of endogenous GlcNAc-1-
phosphotransferase a-subunit protein levels in
the 100K fraction (Fig. 4B). This loss was post-
transcriptional because GNPTAB mRNA levels
did not substantially differ between WT and
LYSET KO cells (fig. S13). Inhibition of protea-
somal degradation with epoxomicin did not
rescue expression of GNPTAB in LYSET KO
cells (fig. S14, A and B). By contrast, preventing
lysosomal degradation by blocking organellar
acidification (bafilomycin A1) or by protease
inhibition (PI) (E64d/leupeptin/pepstatin A)
increased GNPTAB protein levels specifically
in the lysosome-enriched 20K fraction (Fig.
4C and fig. S14, C to E). Moreover, following
bafilomycin treatment we observed immuno-
reactive bands of higher electrophoreticmobility
likely corresponding to partial cleavage products
(Fig. 4C), which was also observed inmagnetite-
purified lysosomes (fig. S14F). These results sug-
gest that GNPTAB is degraded in lysosomes.
Immunofluorescence microscopy in LYSET KO
cells revealed that most endogenous GNPTAB
remained colocalized with a lysosomal marker
upon treatment with both inhibitors (fig. S14,
G and H). However, in bafilomycin—but not
PI-treated—cells some GNPTAB colocalized
with the Golgi apparatus (fig. S14, G and H).
The latter could be due to a disturbance of the
pH within the Golgi apparatus by bafilomycin
that could lead to aberrant post Golgi traf-
ficking (26). These data support a model in
which LYSET interacts withGNPTAB and plays
a major role in proper localization of GNPTAB
inGolgi stacks. In theabsenceofLYSET,GNPTAB
is mislocalized to the lysosomes where it is
degraded.

LYSET’s role in lysosomal transport provides a
disease mechanism for a previously described
genetic disorder

It has long been recognized that mutations in
genes encoding the core components of lyso-
somal enzyme trafficking cause specific in-
herited syndromes including mucolipidosis II
(MLII) in which defective GNPTAB mutations
are etiological (27, 28). Recently, biallelic LYSET
mutations have been described in individuals
from two familieswith a recessive genetic disorder
with characteristics of mucopolysaccharidoses/
mucolipidosis (29). However, the mechanistic
basis upon which to link LYSET with the
disease was tentative. Our results suggest that
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Fig. 3. LYSET binds to GNPTAB and colocalizes with GNPTAB/GNPTG in Golgi apparatus cisternae.
(A) Immunofluorescence microscopy in HAP1 cells showing colocalization of LYSET with the cis-Golgi marker
GM130 along with GNPTAB. Scale bar, 10 mm (B) Transmission electron microscopy (TEM) immunogold
staining (15 nm gold) shows LYSET in Golgi cisternae of SK-MEL-30 WT cells using ultrathin sections.
(C) TEM double immunogold staining on ultrathin sections for LYSET (15 nm gold) and GNPTG (10 nm gold)
in the Golgi apparatus of SK-MEL-30 WT cells. Arrowheads indicate colocalization. Scale bar, 200 nm.
(D) Immunoprecipitation (IP) on lysates of cells expressing epitope-tagged proteins using anti-FLAG
(left panel) or anti-MYC (right panel) magnetic beads, followed by immunoblot analysis with indicated
antibodies. Input lysates are also analyzed.
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defects in lysosomal protein sorting caused by
LYSET deficiency might underlie this genetic
disorder. Elevated serum level of lysosomal en-
zymes is a defining feature of MLII. The mea-
surement of these enzymes in serum is used
diagnostically to distinguish MLII from other
metabolic diseases that cause similar clinical
features (28). Compared with WTmice, serum
from Lyset KO mice showed markedly higher
enzymeactivities of all tested lysosomal enzymes
including a-mannosidase, b-hexosaminidase,
a-L-fucosidase, and b-galactosidase (Fig. 5A).
Furthermore, electron microscopy (EM) analy-
sis of Lyset KOMEFs showed obvious morpho-
logical changes in lysosomes (Fig. 5B). Lysosomes
with electron-dense material accumulated in
the cytoplasm, another characteristic feature
of lysosomal storage disorders (28). Quanti-
tative analysis of EM images revealed that
lysosomes were considerably larger and more
numerous in Lyset KOMEFs although the cell
area was not substantially different compared
with WT cells (Fig. 5C and fig. S15, A and B).
In line with this, aberrant lysosomes were
also observed in human cells lacking LYSET
(fig. S16). In addition, Lyset KO MEFs were
resistant to infection by VSV-EBOV-GP, rein-
forcing our results in human cell lines (Fig. 5D
andmovies S9 and S10). Despite showing char-
acteristic MLII phenotypes including increased
lysosomal enzyme serum levels and storage

materials in lysosomes, Lyset KOmice did not
display obvious clinical symptoms as observed
in humanpatientswith LYSETmutations. Sim-
ilarly, symptoms in the Gnptab KO mouse are
less severe than in human MLII disease (30).
To link the human patient mutations in

LYSET (29) directly to lysosomal protein sorting
we first established that lentiviral complemen-
tation of WT LYSET (isoforms 1 and 2) could
restore CTSB missorting and maturation in
293FT LYSET KO cells (fig. S17). Subsequently,
we tested complementation by LYSET contain-
ing the Y72Ter or R45Wpathogenicmutations
(29). As controls we used WT LYSET as well
as three nonsynonymous LYSET variants not
associated with disease, which occur frequently
in thepopulation. R45Wdisplayed slightly lower
protein expression levels. As expected, Y72Ter
was not detected because this frameshift muta-
tion leads to a premature stop codon. While all
controls corrected CTSBmissorting, Y72Ter and
R45W failed to do so (Fig. 6A). Similarly, R45W
expression did not rescue the lysosomal storage
defects observed using electron microscopy in
LYSETKO cells (fig. S18). Moreover, the patho-
genic allele R45W did not rescue the loss of
endogenous GNPTAB in 100K fractions (Fig. 6B).
Coimmunoprecipitation experiments showed
a severe defect in R45W in binding with
GNPTAB (Fig. 6C and fig. S19). Because R45W
fails to rescue the lysosomal trafficking defect,

these results suggest that the interaction of
LYSET with GNPTAB is critical for GNPTAB
function and that mutations in LYSET that
affect this interaction can contribute to disease
development. Thus, LYSET deficiency causes
several defining features of mucolipidosis II
and patient mutant alleles are compromised
in the role of LYSET in M6P-dependent lysoso-
mal protein sorting.

Conclusion

We establish LYSET as a Golgi-resident protein
essential for M6P-mediated lysosomal protein
trafficking. Our results support a model in
which LYSET is essential for the activity of
GlcNAc-1-phosphotransferase by binding to
and retaining it in the Golgi apparatus. LYSET
is relevant to human disease as patients with
biallelic LYSET mutations suffer a genetic in-
herited disorder (29). Based on our elucidation
of the role of LYSET in cell physiology, we
propose that this disorder is similar to MLII.
Because the clinical symptoms ofmucolipidosis
and mucopolysaccharidosis overlap and not all
cases can be explained by mutations in known
disease genes, LYSET sequencing may help to
identify disease-causing mutations and, con-
sequently, provide a more accurate diagnosis
in patients. Furthermore, as an important com-
ponent of lysosomal function, LYSET is essen-
tial for infection by diverse highly pathogenic
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viruses that rely on endolysosomal activation by
cathepsins.

Materials and methods summary

A detailed version of thematerials andmethods
is provided in the supplementary materials.
In brief, genome-scale CRISPR-Cas9 knockout
libraries were generated in eHAP and U87MG

cells. Libraries were infected with reovirus type
3D to select for a cell population containing
mutations that confer resistance to viral in-
fection. After genomicDNA isolation, PCRwas
used to amplify sequences encoding guideRNAs
and their abundance was quantified using next
generation sequencing. Statistical analysis was
performed to identify and rank genes that were

enriched in the selected population compared
with the uninfected population.
LYSET KO mutations were introduced in

different human cell lines using CRISPR-Cas9.
Cells were infected with reovirus type 3D and
viral infectionwas assessed using crystal violet
assay, RT-qPCR and plaque forming assay. For
infections with VSV pseudotyped with EBOV
GP or SARS-CoV-2 S, viral entry was assayed
using live cell imagingwith an Incucyte system
to monitor VSV-encoded GFP expression.
The endogenous expression of proteins in-

volved in M6P lysosomal protein transport
was determined in extracellular medium, in-
tracellular lysates and subcellular organelle
fractions in WT and KO cells using immuno-
blotting, lysosomal enzyme activity assays and
mass-spectrometry. Binding between LYSET
and GNPTAB was determined using coimmu-
noprecipitations from lysates of cells transfected
with plasmids encoding epitope-tagged proteins.
All experiments involvingmice were approved

by Stanford’s Institutional Animal Care and
Use Committee. C57BL/6J zygotes were pro-
nuclear injected with Cas9 RNPs targeting
Lyset (Tmem251) with two synthetic gRNAs to
introduce a frameshift mutation.
For electron microscopy, cells were fixed,

osmicated, and Epon polymerized. Ultrathin
sections (60 nm)were prepared and examined
in an EM902 microscope. For postembedding
immunogold labeling, ultrathin sections (60 nm)
were prepared from cryoprotected cell pellets
(2.3 M sucrose), collected on Carbon-Formvar-
coated nickel grids, and incubated with one or
two antibodies followed by protein A-coupled
to colloidal gold particles. Images were ac-
quired with a JEM- 2100Plus Transmission
Electron Microscope.
For immunofluorescence, cells treated or not

for 24 hours with lysosomal protease inhibitors
(leupeptin, pepstatin A and E64d) or bafilomy-
cin A1 were fixed with 4% PFA, blocked and
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permeabilized in BSA/saponin buffer followed
by incubations with primary antibodies, Alexa
Fluor-coupled secondaryantibodies andHoechst
33342. Images were acquired using a LSM880
confocal microscope equipped with an Airyscan
detector. For in situ labeling of glucocerebrosi-
dase (GBA) GBA inhibody MDW933 was used
before fixation. BMV-109 probes were applied
for live cell imaging of cysteine cathepsin activ-
ities on an Axiovert 200 M confocal micro-
scope. Autophagic vacuole accumulation was
visualized using the CYTO-ID Autophagy de-
tection kit. All images were processed using
ImageJ (https://imagej.nih.gov/ij/notes.html).
The Manders colocalization coefficient was
determined by means of the JACoP plug-in.
Formass-spectrometry, proteinswere extracted

from cell lysates and conditioned media by
chloroform/methanol, digested by trypsin in
the presence of RapiGest, and the concentra-
tion of desalted sampleswas determined using a
peptide assay. For each sample, 1 mg of peptide
was analyzed by UHPLC-MSMS using self-
packed columns in combinationwith aDionex
Ultimate 3000 nano-UHPLC system coupled
to an Orbitrap Fusion Lumos mass spectrom-
eter. Data acquisition was performed using
PRM, with a previously established assay for
the analysis of lysosomal proteins, and data
independent acquisition (DIA) for both sam-
ple types. Raw files were analyzed by Skyline
(PRM) and Spectronaut (DIA) with determina-
tion of significantly regulated proteins based on
fold-change and p/q-values. Themass spectrom-
etry proteomics data have been deposited to
the ProteomeXchange Consortium through the
PRIDE partner repository with the dataset iden-
tifier PXD029609.
For glycoproteomics, cells were lysed and

protein digestionwas performed using an S-trap
mini column protocol. Peptides were then en-
riched with immobilized metal affinity chroma-
tography with iron-functionalized magnetic
beads. Subsequently, peptide mixtures were
separated over an EasySpray reversed phase
LC column. The mobile phases were driven
and controlled by aDionexUltimate 3000RPLC
nano system. An integrated loading pumpwas
used to load peptides onto a trap column, which
was put in line with the analytical column.
Eluted peptides were analyzed on an Orbitrap
Fusion Tribrid MS system. All data were
searched with Byonic using the entire human
proteome downloaded and anN-glycan database
of 183 N-glycans that included M6P glycans.
The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Con-
sortium through the PRIDE partner reposi-
tory with the dataset identifier PXD029746.
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The human disease gene LYSET is essential for lysosomal enzyme transport and
viral infection
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LYSET helps load lysosomes
Lysosomes are major degradative compartments within the cell, and their dysfunction results in both rare and
common disorders. Certain viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), hijack
lysosomes to gain entry into the cell and start their destructive infection cycle. Richards et al. identified a small protein
named LYSET that is critical for proper lysosomal function. In cells lacking LYSET, the trafficking of enzymes to the
lysosomes was severely disrupted resulting in the accumulation of undigested material in the lysosome. Independently,
Pechincha et al. identified LYSET as being selectively essential when cells feed on extracellular proteins. Cancer
cells commonly rely on extracellular proteins to provide amino acids. LYSET helped to anchor N-acetylglucosamine-1-
phosphotransferase in Golgi membranes for tagging enzymes with the lysosomal trafficking signal mannose-6-
phosphate. Without LYSET, lysosomes were depleted of catabolic enzymes, losing their ability to digest extracellular
proteins. —SMH
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